Yiii.5.2.Аналогия и моделирование
Под аналогией понимается подобие, сходство каких-то свойств, признаков или отношений у различных в целом объектов. Установление сходства (или различия) между объектами осуществляется в результате их сравнения. Таким образом, сравнение лежит в основе метода аналогии.
Если делается логический вывод о наличии какого-либо свойства, признака, отношения у изучаемого объекта на основании установления его сходства с другими объектами, то этот вывод называют умозаключением по аналогии. Ход такого умозаключения можно представить следующим образом. Пусть имеется, например, два объекта: А и В. Известно, что объекту А присущи свойства Р1, Р2…, Рn, Pn+1. Изучение объекта В показало, что ему присущи свойства Р1, Р2…, Рn, совпадающие соответственно со свойствами объекта А. На основании сходства ряда свойств (Р1, Р2…, Рn) у обоих объектов может быть сделано предположение о наличии свойства Pn+1 у объекта В.
Степень вероятности получения правильного умозаключения по аналогии будет тем выше: 1) чем больше известно общих свойств у сравниваемых объектов; 2) чем существеннее обнаруженные у них общие свойства и 3) чем глубже познана взаимная закономерная связь этих сходных свойств. При этом нужно иметь в виду, что если объект, в отношении которого делается умозаключение по аналогии с другим объектом, обладает каким-нибудь свойством, не совместимым с тем свойством, о существовании которого должен быть сделан вывод, то общее сходство этих объектов утрачивает всякое значение.
Указанные соображения об умозаключении по аналогии можно дополнить также и следующими правилами: 1) общие свойства должны быть любыми свойствами сравниваемых объектов, т.е. подбираться «без предубеждения» против свойств какого-либо типа; 2) свойство Рп1 должно быть того же типа, что и общие свойства Р1, Р2…, Рn; 3) общие свойства Р1, Р2…, Рn должны быть возможно более специфичными для сравниваемых
объектов, т.е. принадлежать возможно меньшему кругу объектов; 4) свойство Рn=1, наоборот, должно быть наименее специфичным, т.е. принадлежать возможно большему кругу объектов.1
Метод аналогии применяется в самых различных областях науки : в математике, физике, химии, кибернетике, в гуманитарных дисциплинах и т.д. О познавательной ценности метода аналогии хорошо сказал известный ученый-энергетик В.А.Веников; «Иногда говорят: «Аналогия - не доказательство»... Но ведь если разобраться, можно легко понять, что ученые и не стремятся только таким путем доказать что-нибудь. Разве мало того, что верно увиденное сходство дает могучий импульс творчеству?.. Аналогия способна скачком выводить мысль на новые, неизведанные орбиты, и, безусловно, правильно положение о том, что аналогия, если обращаться с ней с должной осторожностью, - наиболее простой и понятный путь от старого к новому».2
Существуют различные типы выводов по аналогии. Но общим для них является то, что во всех случаях непосредственному исследованию подвергается один объект, а вывод делается о другом объекте. Поэтому вывод по аналогии в самом общем смысле можно определить как перенос информации с одного объекта на другой. При этом первый объект, который собственно и подвергается исследованию, именуется моделью, а другой объект, на который переносится информация, полученная в результате исследования первого объекта (модели), называется оригиналом (иногда - прототипом, образцом и т.д.). Таким образом, модель всегда выступает как аналогия, т.е. модель и отображаемый с ее помощью объект (оригинал) находятся в определенном сходстве (подобии).
«... Под моделированием понимается изучение моделируемого объекта (оригинала), базирующееся на взаимооднозначном соответствии определенной части свойств оригинала и замещающего его при исследовании объекта (модели) и включающее в себя построение модели, изучение ее и перенос полученных сведений на моделируемый объект — оригинал».1
В зависимости от характера используемых в научном исследовании моделей различают несколько видов моделирования.
1. Мысленное (идеальное) моделирование. К этому виду моделирования относятся различные мысленные представления в форме тех или иных воображаемых моделей. Например, в идеальной модели электромагнитного поля, созданной Дж.Максвеллом, силовые линии представлялись в виде трубок различного сечения, по которым течет воображаемая жидкость, не обладающая инерцией и сжимаемостью. Модель атома, предложенная Э.Резерфордом, напоминала Солнечную систему: вокруг ядра («Солнца») обращались электроны («планеты»). Следует заметить, что мысленные (идеальные) модели нередко могут быть реализованы материально в виде чувственно воспринимаемых физических моделей.
. 2. Физическое моделирование. Оно характеризуется физическим подобием между моделью и оригиналом и имеет целью воспроизведение в модели процессов, свойственных оригиналу. По результатам исследования тех или иных физических свойств модели судят о явлениях, происходящих (или могущих произойти) в так называемых «натуральных условиях». Пренебрежение результатами таких модельных исследований может иметь тяжелые последствия. Поучительным примером этого является вошедшая в историю гибель английского корабля-броненосца «Кэптэн», построенного в 1870 г. Исследования известного ученого-кораблестроителя В.Рида, проведенные на модели корабля, выявили серьезные дефекты в его конструкции. Но заявление ученого, обоснованное опытом с «игрушечной моделью», не было принято во внимание английским Адмиралтейством. В результате при выходе в море «Кэптэн» перевернулся, что повлекло за собой гибель более 500 моряков.
В настоящее время физическое моделирование широко используется для разработки и экспериментального изучения различных сооружений (плотин электростанций, оросительных систем и т.п.), машин (аэродинамические качества самолетов, например, исследуются на их моделях, обдуваемых воздушным потоком в аэродинамической трубе), для лучшего понимания каких-то природных явлений, для изучения эффективных и безопасных способов ведения горных работ и т.д.
3.Символическое (знаковое) моделирование. Оно связано с условно-знаковым представлением каких-то свойств, отношений объекта-оригина-ла. К символическим (знаковым) моделям относятся разнообразные топологические и графовые представления (в виде графиков, номограмм, схем и т.п.) исследуемых объектов или, например, модели, представленные в виде химической символики и отражающие состояние или соотношение элементов во время химических реакций.
Особой и очень важной разновидностью символического (знакового) моделирования является математическое моделирование. Символический язык математики позволяет выражать свойства, стороны, отношения объектов и явлений самой различной природы. Взаимосвязи между различными величинами, описывающими функционирование такого объекта или явления, могут быть представлены соответствующими уравнениями (дифференциальными, интегральными, интегро-дифференциальными, алгебраическими) и их системами. «Получившаяся система уравнений вместе с известными данными, необходимыми для ее решения (начальные условия, граничные условия, значения коэффициентов уравнений и т.п.), называется математической моделью явления».1
Математическое моделирование может применяться в особом сочетании с физическим моделированием. Такое сочетание, именуемое вещественно-математическим (или предметно-математическим) моделированием, позволяет исследовать какие-то процессы в объекте-оригинале, заменяя их изучением процессов совсем иной природы (протекающих в модели), которые, однако, описываются теми же математическими соотношениями, что и исходные процессы. Так, механические колебания могут моделироваться электрическими колебаниями на основе полной идентичности описывающих их дифференциальных уравнений.
В настоящее время вещественно-математическое моделирование нередко реализуется с помощью электронных аналоговых устройств, которые позволяют создавать математическую аналогию между процессами, протекающими в объекте-оригинале и в специально организованной электронной схеме. Последняя и обеспечивает получение новой информации о процессах в исследуемом объекте.
3. Численное моделирование на компьютере. Эта разновидность моделирования основывается на ранее созданной математической модели изучаемого объекта или явления и применяется в случаях больших объемов вычислений, необходимых для исследования данной модели. При этом для решения содержащихся в ней систем уравнений с помощью компьютера необходимо предварительное составление соответствующей программы. В данном случае компьютер вместе с введенной в нее программой представляет собой материальную систему, реализующую численное моделирование исследуемого объекта или явления.
Численное моделирование особенно важно там, где не совсем ясна физическая картина изучаемого явления, не познан внутренний механизм взаимодействия. Путем расчетов на компьютере различных вариантов ведется накопление фактов, что дает возможность, в конечном счете, произвести отбор наиболее реальных и вероятных ситуаций. Активное использование методов численного моделирования позволяет резко сократить сроки научных и конструкторских разработок.
Метод моделирования непрерывно развивается: на смену одним типам моделей по мере прогресса науки приходят другие. В то же время неизменным остается одно: важность, актуальность, а иногда и незаменимость моделирования как метода научного познания.
- Южно-Российский Государственный Технический Университет (нпи)
- О г л а в л е н и е
- Предисловие
- Глава. . Философия, ее специфика и
- Место в культуре
- Глава II. Основные этапы исторического развития и школы философии
- Глава III. Философские и естественнонаучные
- Глава iy. Природа, общество, культура.
- Глава IX. Наука, техника, технология.
- П р е д и с л о в и е
- .1.2.Философия: взгляд изнутри
- 3. Границы разума.
- «Теоретический» образ жизни
- 1.7.Философия и мировоззрение
- .1.8. Философия и ценности.
- И зачем судьбою тайной
- Цели нет передо мною…
- Предварительные замечания
- Глава II. Основные этапы исторического
- II.2. Классическая греческая философия.
- II.2.1.Сократ
- II.2.2.Платон
- II.2.3.Академия Платона
- II.2.4.Аристотель
- II.3.Философия эпохи эллинизма
- II.3.1.Эпикуреизм
- II.3.2.Стоицизм
- II.3.3. Общая характеристика античной философии
- II.4. Философия древней Индии и Китая. Аксиомы "западной" культуры
- II.4.1.Философия древней Индии.
- II.4.2.Буддизм
- II.4.3.Три драгоценности буддизма
- II.4.4.Чань-буддизм
- II.5.Философия древнего Китая
- II.5.1.Даосизм: Небо-дао-мудрость
- Даосизм и греческая философия
- Человек
- II.5.2.Конфуций
- Знание – преодоление себя
- Обретение Пути
- Справедливость – судьба
- Природа человека
- «Благородный муж»
- Сыновняя почтительность
- II.5.3.Сократ – Конфуций
- II.6. Философия в средние века
- II.6.1. Античная культура и христианство
- Бог, человек, мир в христианстве. Вера вместо разума
- Новый образец: любовь, терпение, сострадание
- Человек: между греховностью и совершенством
- Жить сообразно природе или следуя Богу?
- "Природа" и свобода
- II.6.2. Религиозный характер философии средневековья. Патристика и схоластика
- II.7. Философия Нового времени. Выдающиеся европейские философы XVII-XVIII вв. Русские философы XVIII в.
- II.9. Философия марксизма. Третья историческая форма диалектики
- II.10. Философский иррационализм.
- II.10.1. Шопенгауэр
- Мир как воля и представление
- Человек в мире
- Феномен сострадания: путь к свободе
- II.10.2.Ницше
- Воля к власти
- Человек и сверхчеловек
- Тело и душа
- Человек должен стать свободным
- II.11. Русская философия XIX в.
- II.12. Панорама философии хх века
- II.12.1.Философия "серебряного века" русской культуры
- II.12.2.Советская философия
- II.12.3.Неопозитивизм
- II.12.4.Феноменология
- II.12.5.Экзистенциализм
- II.12.6.Герменевтика
- Глава III. Философские и естественнонаучные картины мира
- III.I. Понятия «картина мира» и «парадигма». Естественнонаучная и философская картины мира.
- III.2. Натурфилософские картины мира эпохи античности
- III.2.1. Первый (ионийский) этап в древнегреческой натурфилософии. Учение о первоначалах мира. Миропонимание пифагореизма
- III.2.2. Второй (афинский) этап развития древнегреческой натурфилософии. Возникновение атомистики. Научное наследие Аристотеля
- III.2.3. Третий (эллинистский) этап в древнегреческой натурфилософии. Развитие математики и механики
- III.2.4. Древнеримский период античной натурфилософии. Продолжение идей атомистики и геоцентрической космологии
- III.3. Естественнонаучная и математическая мысль эпохи Средневековья
- III.4. Научные революции эпохи нового времени и смена типов миропонимания
- III.4.1. Научные революции в истории естествознания
- III.4.2. Первая научная революция. Смена космологической картины мира
- III.4.3. Вторая научная революция.
- Создание классической механики и
- Экспериментального естествознания.
- Механистическая картина мира
- III.4.4. Естествознание Нового времени и проблема философского метода
- III.4.5. Третья научная революция. Диалектизация естествознания и очищение его от натурфилософских представлений.
- III.5 диалектико-материалистическая картина мира второй половины XIX века
- III.5.1. Формирование диалектико- материалистической картины мира
- III.5.2. Эволюция понимания материи в истории философии и естествознания. Материя как объективная реальность
- III.5.3. От метафизико-механического – к диалектико-материалистическому пониманию движения. Движение как способ существования материи
- III.5.4. Понимание пространства и времени в истории философии и естествознания. Пространство и время как формы бытия движущейся материи
- III.5.5. Принцип материального единства мира
- III.6. Четвертая научная революция первых десятилетий хх века. Проникновение в глубь материи. Квантово-релятивистские представления о мире
- III.7. Естествознание хх века и диалектико-материалистическая картина мира
- Глава iy.Природа, общество, культура
- Iy.1. Природа как естественная основа жизни и развития общества
- Iy.2. Современный экологический кризис
- Iy.3. Общество и его структура. Социальная стратификация. Гражданское общество и государство.
- Iy.4. Человек в системе социальных связей. Свобода и необходимость в общественной жизни.
- 4.5. Специфика философского
- Подхода к культуре.
- Культура и природа.
- Функции культуры в обществе
- Глава y. Философия истории. Y.I. Возникновение и развитие философии истории
- Y.2. Формационная концепция общественного развития в философии истории марксизма
- Y.3. Цивилизационный подход к истории человечества. Традиционные и техногенные цивилизации
- Y.4. Цивилизационные концепции «индустриализма» и «постиндустриализма» y.4.1. Концепция «Стадий экономического роста»
- Y.4.2. Концепция «индустриального общества»
- Y.4.3. Концепция «постиндустриального (технотронного) общества»
- Y.4.4. Концепция «третьей волны» в развитии цивилизации
- Y.4.5. Концепция «информационного общества»
- Y.5. Философия истории марксизма и
- Современные «индустриальные» и
- «Постиндустриальные» концепции
- Развития общества
- Глава yi. Проблема человека в философии,
- Науке и социальной практике
- Yi. 1.Человек во Вселенной.
- Антропный космологический принцип
- Yi.2. Биологическое и социальное в человеке. Человек как индивид и личность
- Yi.3. Сознание и самосознание человека
- Yi.4. Проблема бессознательного. Фрейдизм и неофрейдизм
- Yi.5. Смысл человеческого бытия. Свобода и ответственность.
- Yi.6. Мораль, нравственные ценности, право, Справедливость.
- Yi.7. Представления о совершенном человеке в различных культурах
- Глава yii. Познание и практика
- VII.1. Субъект и объект познания
- Yii.2. Этапы процесса познания. Формы чувственного и рационального познания
- Yii.3. Мышление и формальная логика. Индуктивный и дедуктивный типы умозаключения.
- Yii.4. Практика, ее виды и роль в познании. Специфика инженерной деятельности
- Yii.5. Проблема истины. Характеристики истины.Истина, заблуждение, ложь. Критерии истины.
- Глава yiii. Методы научного познания yiii.I ПонятиЯ метода и методологии. Классификация методов научного познания
- Yiii.2. Принципы диалектического метода, их применение в научном познании. Yiii.2.1.Принцип всесторонности рассмотрения изучаемых объектов. Комплексный подход в познании
- Yiii.2.2.Принцип рассмотрения во взаимосвязи. Системное познание
- Yiii.2.3.Принцип детерминизма. Динамические и статистические закономерности. Недопустимость индетерминизма в науке
- Yiii.2.4.Принцип изучения в развитии. Исторический и логический подходы в познании
- Yiii.3. Общенаучные методы эмпирического познания yiii.3.1.Научное наблюдение
- Yiii.3.3.Измерение
- Yiii.4. Общенаучные методы теоретического познания yiii.4.1.Абстрагирование. Восхождение от
- Yiii.4.2.Идеализация. Мысленный эксперимент
- Yiii.4.3.Формализация. Язык науки
- Yiii.5. Общенаучные методы, применяемые на эмпирическом и теоретическом уровнях познания yiii.5.1.Анализ и синтез
- Yiii.5.2.Аналогия и моделирование
- IX. Наука, техника, технология
- IX.1. Что такое наука?
- IX.2.Наука как особый вид деятельности
- IX.3.Закономерности развития науки.
- IX.4. Классификация наук
- Механика прикладная механика
- IX.5. Техника и технология как социальные явления
- IX.6. Взаимоотношение науки и техники
- IX.7. Научно-техническая революция, ее технологические и социальные последствия
- IX.8. Социальные и этические проблемы научно-технического прогресса
- IX.9.Наука и религия
- Глава х. Глобальные проблемы современности х.I. Социально-экономические, военно-политические и духовные характеристики мировой ситуации на рубеже хх и ххi веков.
- Х.2. Многообразие глобальных проблем, их общие черты и иерархия
- Х.3. Пути преодоления глобальных кризисных ситуаций и стратегия дальнейшего развития человечества