3.4 Закон квадратичного роста
Поскольку основное развитие обязано квадратичному закону роста, имеет смысл подробнее остановиться на его природе и происхождении. Скорость квадратичного роста, приводящего к росту по гиперболе, может быть представлена в виде
N/t = N2/K2, (3.2; П.13)
где введено время t=T/, которое измеряется в условных поколениях=45 годам, а K= (C/)0.5= 64000 -- безразмерная константа роста.
Это число занимает центральное место в теории роста, определяя все основные соотношения, возникающие при описании системной динамики человечества, являясь, в терминах синергетики, масштабным параметром. Следует отметить, что числами порядка K105определяется эффективный размер группы, в которой проявляются коллективные признаки когерентного сообщества людей. Таким может быть оптимальный масштаб города или района большого города, обладающего, как правило, системной самодостаточностью. В популяционной генетике величины такого порядка определяют численность устойчиво существующего вида или популяции, занимающей определенный ареал и экологическую нишу. Иными словами, это число является масштабом сообщества, имеющего генетическую или социальную природу.
Уравнение (3.2) в каждый момент времени приравнивает скорость роста к развитию, которое является функцией состояния системы и выражается через квадрат численности всего населения. Смысл этой зависимости в том, что она определяется коллективным состоянием системы и выражается числом парных связей в системе населения мира, всей совокупностью процессов, участвующих в развитии. Так рост эффективно определяется взаимодействием, зависящим от объема знаний и информационных связей, которые играют основную роль в этом процессе.
Определенная таким образом скорость роста не зависит явно от внешних условий и определена только собственными системными характеристиками -- параметрами K и . Само системное развитие динамически самоподобно и его внутренние закономерности со временем не меняются, сохраняя автомодельность роста. Только тогда, когда прирост населения на протяжении поколения или характерного временистановится сравнимым с самой численностью населения мира, возникает критический переход к другому закону роста и как следствие -- переход к стабилизированной численности населения Земли. В этом следует видеть внутреннюю, системную природу демографического перехода. Существенно подчеркнуть, что этот фундаметальный закон роста описывает рост человечества до перехода за все время развития при неизменных его характеристиках, которые в первом приближении не эволюционировали.
Такое кооперативноевзаимодействие результативно описывает всевозможные процессы экономической, технологической, социальной, культурной и биологической природы, где скорость размножения является лишь одним из факторов роста. Закон роста следует рассматривать как феноменологическое представление способности человечества к развитию, как свойство динамической системы. Для физика такое описание системы естественно и лежит в основе многих теорий. Однако подобный подход к описанию человечества требует не только своего обоснования, но и известных усилий со стороны тех, кто мало знаком с такими общими феноменологическими методами. Некоторым они могут показаться формальными и механистичными. Это связано в первую очередь с необходимостью отказа от редукционизма, от того, чтобы все представлять в виде элементарных и конкретных причинно-следственных связей, без обращения к поведению системы в целом.
При этом важно понять как происхождение, так и ограничения системного метода с тем, чтобы верно оценить его возможности. Более того, следует отметить, что определенные в обществоведении частные, технолого-экономические или социально-культурные демографические механизмы также носят феноменологический характер. Они в большинстве случаев выделены из-за удобства изучения, когда связи со всеми другими общественно значимыми факторами ограничиваются с целью определения главных черт рассматриваемых явлений на соответствующем уровне обобщения. Такой подход принципиально ограничен при описании поведения систем, где именно взаимозависимость, нелинейность сильносвязанных событий и механизмов заставляет искать другие -- интегративные -- принципы для описания поведения в течение длительного времени и на больших территориях.
Переход к разделу>>>1.1>>>1.2>>>1.3>>>1.4>>>1.5>>>1.6
- С.П. Капица
- С.П. Капица
- 1.2 Статистическая природа проблемы
- 1.3 От качественного к количественному анализу
- 1.4 Демографический взрыв и переход
- 1.5 Методы демографии
- 1.6 Сложность системы и уровень агрегации данных
- 1.7 Oбзор содержания книги
- Глава 2. Население мира как система
- 2.1 Системный подход в демографии
- 2.2 Взаимодействия в системе населения
- 2.3 Социальный человек как биологический вид
- 2.4 Слагаемые роста населения
- 2.5 Mир нелинейных систем
- 2.6 О междисциплинарных исследованиях
- Глава 3. Описание модели
- 3.1 Принципы моделирования
- 3.2 Линейный и экспоненциальный рост
- 3.3 Гиперболический рост населения мира
- 3.4 Закон квадратичного роста
- 3.5 Информационная природа роста
- 3.6 Pезюме результатов математических расчетов
- Глава 4. Модель и данные антропологии и демографии
- 4.1 Модель и данные палеодемографии
- 4.2 Модель в историческое время
- 4.3 Число людей, когда-либо живших на Земле
- 4.4 Сравнение модели с прогнозами демографии
- Глава 5. Трансформация темпов развития во времени
- 5.1 Преобразование демографического времени
- 5.2 Преобразование исторического времени
- 5.3 Начало отсчета системного времени
- 5.4 Синхронизм мирового развития
- 5.5 Проблема времени в истории
- Глава 6. О коллективном взаимодействии
- 6.1 Природа взаимодействия и сознание
- 6.2 Судьба изолятов и мировое развитие
- 6.3 Иерархия демографических структур
- 6.4 О циклах социально-экономического развития
- Глава 7. Демографический переход
- 7.1 Характеристики демографического перехода
- 7.2.Мировой демографический переход
- 7.3 Последствия демографического перехода
- 7.4 Стабилизация населения мира и ее последствия
- 7.5 Сопоставление феноменологии и демографии
- 7.6 Модель и теория демографических процессов
- Глава 8. Устойчивость роста и демографический фактор
- 8.1 Устойчивость демографической системы
- 8.2 Устойчивость исторического процесса
- 8.3 Глобальная устойчивость в будущем
- Глава 9. Влияние ресурсов и окружающей среды
- 9.1 Откpытая модель и влияние ресурсов на рост
- 9.2 Энеpгопотpебление человечеством
- 9.3 Есть ли ограничение роста ресурсами?
- 9.4 Пространственное распределение населения
- 9.5 Распределение благ в системе народов мира
- 9.6 Мир будущего и концепция устойчивого развития
- Глава 10. Демогpафическое положение России
- 10.1 Демогpафические процессы в России
- 10.2 Демогpафические сценарии для России
- 10.3 Последствия демографического перехода
- Заключение и выводы
- Приложение. Математическая теория роста населения Земли
- Библиография Общая теория
- Антропология
- Демография
- История
- Глобальные проблемы и окружающая среда
- Математика и системы