18. Естественные науки классического периода и их философское обоснование
Классический период развития науки приходится на время зрелого капитализма. В промышленности наблюдается переход к крупному машинному производству, свободная конкуренция достигает апогея, растет пролетариат, обостряются классовые противоречия. Конец этого периода знаменуется установлением промышленных монополий и финансовой олигархии.
1. Наука превращается в идеологию. Наиболее отчетливо это выразилось в представлениях, сложившихся в XVIII столетии, в век Просвещения. В этот период ученые расстаются с романтическими иллюзиями бэконианской идеологии науки. Образ «плодоносной» науки, сослуживший добрую службу на первых порах ее институционализации, стал в какой-то мере тормозом па пути развития теоретического знания. Поэтому ученые в этот период в большей мере пропагандируют образ «светоносной» науки и идею самоценности научной истины. В условиях нарастающей дифференциации науки ученые весьма озабочены поиском консенсуса для поддержания высокого статуса научных исследований. Если прежде господствовал взгляд на научные знания как на то, что доступно только избранным и открывает им путь к благу, то просветители существенно раздвинули рамки социального воздействия науки. Видя в невежестве и суевериях основной источник всех пороков и зол в обществе, они считали распространение научных знаний среди широких слоев населения решающим средством достижения социальной справедливости и разумного общественного устройства.
В начале XIX века, в связи с общим разочарованием в итогах Великой Французской революции, идеи Просвещения стали терять свои позиции. Однако укоренившееся на их основе понимание научного знания как самоценного и общественно значимого блага надолго осталось широко разделяемой предпосылкой, исходя из которой обсуждалась социальная роль науки.
Иначе говоря, расширение объема научного знания представлялось целью, не требующей какого-либо внешнего оправдания. В качестве едва ли не бесспорной ценности выступал и принцип свободы научных исследований. Всякое выступление против этих установок воспринималось как голос обскурантизма.
Нередко дело доходило до абсолютизации культурно-мировоззренческих возможностей науки. Утверждалось, в частности, что только научное, а точнее — только естественнонаучное знание может служить надежным ориентиром в человеческой деятельности. Тем самым принижалась или вообще отрицалась мировоззренческая значимость религии, философии, искусства. Впоследствии на этой почве возник сциентизм — мировоззренческая позиция, считающая науку высшей формой культуры, своего рода сверхценностью, и третирующая все, что выходит за рамки научной строгости и рациональности.
С течением времени культурно-мировоззренческая роль науки становится все более заметной, и сегодня она весьма и весьма внушительна. Вместе с тем сегодня с предельной ясностью обозначилась и ущербность односторонней ориентации на науку в мировоззренческом плане, необходимость единства науки с другими формами культуры, хотя реальное достижение такого единства — далеко не простая задача. Важно также иметь в виду и то, что в современных условиях
осуществление культурно-мировоззренческой функции — лишь один из каналов воздействия науки на общество.
Поэтому ориентация исключительно на эту функцию ведет к односторонности в понимании их взаимоотношений.
2. В этот период, как отмечал Ф. Энгельс, естествознание в целом переходит от фазы собирания, накопления отдельных фактов к созданию фундаментальных теорий, отражающих процессы и связи в неживой и живой природе. Славу этого периода составляет классическая механика, получившая в трудах Эйлера, Лагранжа, Якоби филигранную отделку. Больших успехов достигает математика, Фарадей и Максвелл создают классическую электродинамику, биология увенчивается теорией Дарвина, закладываются основы экспериментальной физиологии, химия после открытий Лавуазье расстается с последними остатками аристотелеанства.
3. На классическом этапе окончательно закрепляется организация науки по дисциплинарному принципу. Вместо одной науки, названной Бэконом естественной философией, возникает множество специальных наук. Если романтический этап — время ученых-энциклопедистов, то XIX в. знаменует приход в науку ученых-специалистов.
4. Происходит реформа образования в университетах, возникают политехнические институты. Уже в XVIII в. возникли новые формы организации научной деятельности в области техники — прежде всего инженерные общества и высшие технические школы, а академии наук сконцентрировались на фундаментальных научных проблемах. Технические школы, предназначенные для подготовки инженеров по разным специальностям, почти одновременно возникают во Франции, Германии и России. Появляются и первые учебники для этих школ. Однако преподавание научных дисциплин в них было еще весьма элементарным. В 1720 г. во Франции был открыт ряд военно-инженерных учебных заведений для подготовки специалистов по фортификации и артиллерии, а также Корпус инженеров путей сообщения, а в 1747 г. - Школа мостов и дорог. Важную роль играла основанная в 1748 г. Мезьерская военно-инженерная школа, отделение кондукторов в которой закончил известный французский ученый и инженер Гаспар Монж, сыгравший огромную роль в развитии высшего технического образования. Это отделение готовило мастеров и производителей работ, его ученики изучали элементы алгебры и геометрии, черчение, изготовляли модели различных систем сводов, нужные для создания прочных фортификационных сооружений. Позже Монж сам стал профессором этой школы и преподавал математику, механику, физику. В Германии инженерные школы возникли несколько позже: в Берлине в 1799 г. основана Строительная академия, в 182) г. - Ремесленный институт; политехнические школы появляются одна за другой в Карлсруэ, Мюнхене, Дрездене, Ганновере и Штутгарте. В 1815 г. основан Политехнический институт в Вене. Открытие военно-инженерных учебных заведений оказало сильное воздействие на развитие промышленности, подготовив новые высококвалифицированные и научно образованные инженерные кадры, что позволило Германии к концу XIX в. стать одной из наиболее развитых в промышленном отношении стран. Английские же инженеры в то время не интересовались теоретическими проблемами и игнорировали занятия математикой. В Англии в течение первых двух десятилетий XIX в. еще не было специальных технических учебных заведений, и хотя в течение долгого времени Англия считалась самой передовой в промышленном отношении страной, отставание в области высшего технического образования обусловило, в конечном счете, и отставание в практической сфере. В результате английские инженеры вынуждены были признать, что Германия опередила их, и произошло это вследствие высокой научной подготовки немецких инженеров. Английские же инженеры были в это время самоучками, не обладавшими широкими научными знаниями. Лишь в 1841 г. в Лондонском университетском колледже были организованы три технические кафедры: по гражданскому строительству, механике и машиностроению.
В США первым техническим учебным заведением была Вест-Пойнтская военная академия, основанная в 1802 г, по решению Конгресса США. Бруклинский политехнический институт был открыт в 1854 г., Массачусетский технологический институт - в 1861 г.
Первой высшей технической школой, ориентированной на высокую научно-теоретическую подготовку студентов, стала Парижская политехническая школа, которая была основана в 1794 г. Гаспаром Монжем, создателем начертательной геометрии. Здесь будущим инженерам начали систематически преподавать математику и теоретические основы естествознания. Первыми учениками этой школы были ставшие впоследствии известными учеными Пуансо, Био, Пуассон, Коши, Навье, Гей-Люссак. Парижская политехническая школа «стала центром развития математики и математического естествознания, заменив в этом отношении университеты. Она сумела сохранит!, ведущее место едва ли не до нашего времени, во всяком случае все крупные математики Франции XIX в. или окончили Политехническую школу. или принадлежали к корпорации ее преподавателей. В этом — большая заслуга Монжа, который основал школу на строгом фундаменте теории, и притом самой современной». Это тем более показательно и демонстрирует обратное плодотворное воздействие техники на развитие фундаментальной науки, что, по «идее Монжа, Политехническая школа должна была готовить не профессоров математики, а инженеров различных специальностей, которые имели бы солидную научную и практическую подготовку».
Парижская политехническая школа скоро стала центром развития математики и математического естествознания, а затем и прикладной механики, а также образцом для создания таких высших технических школ в других странах — Германии, Испании, Швеции, США. Эти высшие учебные заведения постепенно зарекомендовали себя и как центры проведения научных исследований в области технических наук. В России по образцу Парижской политехнической школы в 1809 г. был создан Институт корпуса инженеров путей сообщения, инициатором и начальником которого был ученик Г. Монжа, бывший профессор Парижской политехнической школы испанец А.А. Бетанкур. В 20—30-х гг. XIX в. Институт становится ведущим научным центром в области строительного искусства и науки.
К концу XIX в. научная подготовка инженеров, их специальное, именно высшее техническое, образование становится настоятельной необходимостью. Появляются и такие области инженерной деятельности, которые вообще немыслимы без глубоких научных исследований. Да и от самих научных исследований общество начинает все более настоятельно требовать прикладных технических результатов. Возникла даже идея организации при физико-математических отделениях университетов технических отделений. Однако цели университетского и цели инженерного образования тогда резко различались: университеты должны были готовить ученых, преподавание же и технических школах носило совсем иной, более практический характер. В то же время в важности теоретических исследований для инженерной практики были убеждены многие ученые и инженеры конца XIX в. Кроме того, творения инженера не должны противоречить законам природы, знание которых дает наука. Но это должны быть уже несколько иные научные исследования, которые проводятся в интересах техники, оставаясь в то же время теоретическими, и иные науки — технические, появившиеся именно в конце XIX — начале XX вв. Именно такого рода науки и исследования начинают развиваться в высших технических школах, которые становятся постепенно центрами не только научного образования инженеров, но и научного исследования в различных областях техники.
- 2. Наука и её взаимоотношение с философией, религией и искусством
- 4. Античная наука: социально-исторические условия формирования, существенные хар-ки
- 6. Аристотелевско-птолемеевская космология и физика
- 8. Средневековая наука и теологическая картина мира
- 10.Теория двойственной истины и её роль в развитии науки
- 12. Индуктивная логика Бэкона как теоретическое обоснование экспериментального метода
- 14. Г. Галилей и его роль в становлении науки Нового времени
- 16. И.Ньютон и его роль в становлении классической науки
- 18. Естественные науки классического периода и их философское обоснование
- 20. Философские аспекты современной космологии и космогонии
- 22. Боровско-эйнштейновская картина мира и её особенности
- 24.Основне этапы развития философии науки (эмпириокритицизм и неопозитивизм)
- 26. Научные парадигмы и научные революции
- 28. Типы знания; специфика научного исследования
- 30. Дисциплинарная структура современной науки и её динамика
- 32. Научная методология и её специфика
- 34. Структура и методы теоретического исследования
- 36. Субъект социально-гуманитарного познания
- 38. Жизнь как категория наук об обществе и культуре
- 40. Объяснение и понимание в социальных и гуманитарных науках
- 42. Наука как социальный институт
- 44. Наука и политика
- 46. Этика науки
- 1. Наука как культурный феномен, место науки в техногенной цивилизации
- 3. Преднаука и мифологическая картина мира
- 5. Философская картина мира в эпоху древних цивилизаций.
- 3.1. Милетская школа (Miletus Philosophy)
- 3.2. Эфесская школа
- 3.3. Пифагореизм
- 3.5. Элейская школа (Eleatic Philosophy)
- 3.6. Эмпедокл (Empedocle)
- 3.7. Анаксагор (Anaxagoras)
- 3.8. Атомизм (Atomic Theory)
- Глава 4. Классический период античной философии
- 4.2. Сократ (Sokrates)
- 4.3. Платон (Plato)
- 7. Античная наука в эпоху эллинизма и ее особенности
- 9. Проблема знания и веры в средневековой философии
- 12.5. Проблема знания и веры в европейской схоластике
- 11. Становление экспериментального метода и математизации науки
- 13. Революция в астрономии 16-17 в.В. И ее значение для общего развития естественных наук
- 15.Рационализм Декарта и его учение о научной методологии Нового времени
- 17. Ньютоно-картезианская картина мира
- 19. Становление неклассической физики.
- 21. Становление концепции глобального эволюционизма
- 23, 25. Основные этапы развития философии науки (классический позитивизм, постпозитивизм)
- 27. Cмена типов научной рациональности
- 29. Наука и псевдонаука
- 31. Язык науки и его специфика
- 33. Структура и методы эмпирического познания
- 35, 37. Науки о природе и науки об обществе и культуре. Природа ценностей и их роль в социально-гуманитарном познании
- 39. Время, пространство и хронотоп в социальном и гуманитарном знании
- 41. Вера, сомнение и знание в социальных и гуманитарных науках
- 43.Научные сообщества и их исторические типы
- 45. Наука и бизнес