logo search
Методическое пособие концептуальной самоподгото

5.1.2 Макромир

В истории изучения природы можно выделить два этапа: донаучный и научный. Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествознания в XVI—XVII вв. Наблюдаемые природные явления объяснялись на основе умозрительных философских принципов. Наиболее значимой для последующего развития естественных наук была концепция дискретного строения материи – атомизм, согласно которому все тела состоят из атомов – мельчайших в мире частиц. Со становления классической механики начинается научный этап изучения природы. Поскольку современные научные представления о структурных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начинать нужно с концепций классической физики. Формирование научных взглядов на строение материи относится к XVIв., когда Г.Галилеем была заложена основа первой в истории науки физической картины мира – механической. Он не просто обосновал гелиоцентрическую систему Н.Коперника и открыл закон инерции, а разработал методологию нового способа описания природы – научно-теоретического. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, которые становились предметом научного исследования. Галилей писал: «Никогда я не стану от внешних тел требовать чего-либо иного, чем величина, фигура, количество и более или менее быстрого движения для того, чтобы объяснить возникновение вкуса, запаха и звука».

И.Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система. В рамках механической картины мира, разработанной И.Ньютоном и его последователями, сложилась дискретная (корпускулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц – атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса. Существенной характеристикой ньютоновского мира было трёхмерное пространство евклидовой геометрии, которое абсолютно постоянно и всегда пребывает в покое. Время представлялось как величина, не зависящая ни от пространства, ни от материи. Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики. Итогом ньютоновской картины мира явился образ Вселенной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий. Механистический подход к описанию природы оказался необычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области – оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рамках механистической картины мира. Наряду с механической корпускулярной теорией, осуществлялись попытки объяснить оптические явления принципиально иным путём, а именно – на основе волновой теории, сформулированной X.Гюйгенсом. Волновая теория устанавливала аналогию между распространением света и движением волн на поверхности воды или звуковых волн в воздухе. В ней предполагалось наличие упругой среды, заполняющей всё пространство, – светоносного эфира. Исходя из волновой теории X.Гюйгенс успешно объяснил отражение и преломление света.

Другой областью физики, где механические модели оказались неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М.Фарадея и теоретические работы английского физика Дж.К.Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и положили начало электромагнитной картине мира. Явление электромагнетизма открыл датский естествоиспытатель X.К.Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, М.Фарадей обнаружил, что временное изменение в магнитных полях создаёт электрический ток. М.Фарадей пришёл к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Его работы стали исходным пунктом исследований Дж.К.Максвелла, заслуга которого состоит в математической разработке идей М.Фарадея о магнетизме и электричестве. Максвелл «перевёл» модель силовых линий Фарадея в математическую формулу. Понятие «поле сил» первоначально складывалось как вспомогательное математическое понятие. Дж.К.Максвелл придал ему физический смысл и стал рассматривать поле как самостоятельную физическую реальность: «Электромагнитное поле – это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии». Исходя из своих исследований, Максвелл смог заключить, что световые волны представляют собой электромагнитные волны. Единая сущность света и электричества, которую М.Фарадей предположил в 1845 г., а Дж.К.Максвелл теоретически обосновал в 1862 г., была экспериментально подтверждена немецким физиком Г.Герцем в 1888 г. После экспериментов Г.Герца в физике окончательно утвердилось понятие поля не в качестве вспомогательной математической конструкции, а как объективно существующей физической реальности. Был открыт качественно новый, своеобразный вид материи. Итак, к концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля. В результате же последующих революционных открытий в физике в конце прошлого и начале нынешнего столетий оказались разрушенными представления классической физики о веществе и поле как двух качественно своеобразных видах материи. Стало ясно, всё, что нас окружает – это вакуум и вакуум в возбуждённом состоянии!